🎉 30% OFF Pro Planรับเลย
Medical AI Background

API Access

MedGemma & MedSigLIP API Usage Guide

Get started with Google's medical AI models through comprehensive API access. Apply for API keys and integrate advanced medical AI capabilities into your applications.

Apply for API Access

Get started with MedGemma and MedSigLIP APIs

MedGemma API

Advanced medical text and multimodal AI models

Access MedGemma's powerful capabilities for medical text analysis, image understanding, and clinical decision support.

Key Features

  • Medical text generation and analysis
  • Multimodal medical image and text processing
  • Clinical question answering
  • Medical report generation
  • Fine-tuning capabilities

Available Models

MedGemma 4B Multimodal

Lightweight model for medical image and text tasks

4B parameters

MedGemma 27B Text-only

Large language model specialized for medical text

27B parameters

MedGemma 27B Multimodal

Advanced multimodal model for complex medical tasks

27B parameters

MedSigLIP API

Medical image-text encoder for classification and retrieval

Leverage MedSigLIP's efficient dual-tower architecture for medical image classification, zero-shot inference, and semantic retrieval.

Key Features

  • Zero-shot medical image classification
  • Semantic image retrieval
  • Medical image embeddings
  • Data-efficient classification
  • Cross-modal similarity search

Model Specifications

Parameters:400M parameters
Image Size:448×448 pixels
Text Length:64 tokens maximum
Architecture:Dual-tower encoder (vision + text)

Deployment Options

Choose the best deployment method for your needs

Local Deployment

Run models locally using Hugging Face transformers

Pros:

  • +Full control
  • +No API limits
  • +Data privacy

Cons:

  • -Requires GPU resources
  • -Setup complexity
Best for: Development and testing

Vertex AI Deployment

Deploy as REST API endpoints on Google Cloud

Pros:

  • +Scalable
  • +Managed infrastructure
  • +Production-ready

Cons:

  • -Usage costs
  • -Cloud dependency
Best for: Production applications

Batch Processing

Process large datasets with Vertex AI batch jobs

Pros:

  • +Cost-effective
  • +Large-scale processing

Cons:

  • -Not real-time
  • -Batch scheduling
Best for: Bulk data processing

Code Examples

Get started with implementation examples

MedGemma Implementation

Local Deployment

from transformers import pipeline

# Load MedGemma model
pipe = pipeline(
    "text-generation",
    model="google/medgemma-27b-text-it",
    torch_dtype="bfloat16",
    device="cuda"
)

# Generate medical text
response = pipe(
    "What are the symptoms of diabetes?",
    max_length=200,
    temperature=0.7
)

print(response[0]['generated_text'])

Vertex AI REST API

import requests
import json

# Vertex AI endpoint
endpoint_url = "https://your-endpoint.googleapis.com/v1/projects/your-project/locations/us-central1/endpoints/your-endpoint:predict"

# Request payload
payload = {
    "instances": [{
        "prompt": "What are the symptoms of diabetes?",
        "max_tokens": 200,
        "temperature": 0.7
    }]
}

# Make API request
headers = {
    "Authorization": "Bearer YOUR_ACCESS_TOKEN",
    "Content-Type": "application/json"
}

response = requests.post(endpoint_url, json=payload, headers=headers)
result = response.json()

print(result['predictions'][0]['generated_text'])

MedSigLIP Implementation

Local Deployment

from transformers import AutoModel, AutoProcessor
import torch
from PIL import Image

# Load MedSigLIP model
model = AutoModel.from_pretrained("google/medsiglip")
processor = AutoProcessor.from_pretrained("google/medsiglip")

# Load and process image
image = Image.open("medical_image.jpg")
text = "chest x-ray showing pneumonia"

# Process inputs
inputs = processor(
    text=[text],
    images=[image],
    return_tensors="pt",
    padding=True
)

# Get embeddings
with torch.no_grad():
    outputs = model(**inputs)
    image_embeds = outputs.image_embeds
    text_embeds = outputs.text_embeds

# Calculate similarity
similarity = torch.cosine_similarity(image_embeds, text_embeds)
print(f"Similarity score: {similarity.item():.4f}")

Zero-shot Classification

import torch
from transformers import AutoModel, AutoProcessor
from PIL import Image

# Load model and processor
model = AutoModel.from_pretrained("google/medsiglip")
processor = AutoProcessor.from_pretrained("google/medsiglip")

# Define classification labels
labels = [
    "normal chest x-ray",
    "pneumonia chest x-ray",
    "covid-19 chest x-ray",
    "lung cancer chest x-ray"
]

# Load image
image = Image.open("chest_xray.jpg")

# Process inputs
inputs = processor(
    text=labels,
    images=[image] * len(labels),
    return_tensors="pt",
    padding=True
)

# Get predictions
with torch.no_grad():
    outputs = model(**inputs)
    logits = outputs.logits_per_image
    probs = torch.softmax(logits, dim=-1)

# Get top prediction
top_idx = torch.argmax(probs, dim=-1)
confidence = probs[0, top_idx].item()

print(f"Prediction: {labels[top_idx]}")
print(f"Confidence: {confidence:.4f}")