Get started with Google's medical AI models through comprehensive API access. Apply for API keys and integrate advanced medical AI capabilities into your applications.
Get started with MedGemma and MedSigLIP APIs
Advanced medical text and multimodal AI models
Access MedGemma's powerful capabilities for medical text analysis, image understanding, and clinical decision support.
Lightweight model for medical image and text tasks
4B parametersLarge language model specialized for medical text
27B parametersAdvanced multimodal model for complex medical tasks
27B parametersMedical image-text encoder for classification and retrieval
Leverage MedSigLIP's efficient dual-tower architecture for medical image classification, zero-shot inference, and semantic retrieval.
Choose the best deployment method for your needs
Run models locally using Hugging Face transformers
Deploy as REST API endpoints on Google Cloud
Process large datasets with Vertex AI batch jobs
Get started with implementation examples
from transformers import pipeline
# Load MedGemma model
pipe = pipeline(
"text-generation",
model="google/medgemma-27b-text-it",
torch_dtype="bfloat16",
device="cuda"
)
# Generate medical text
response = pipe(
"What are the symptoms of diabetes?",
max_length=200,
temperature=0.7
)
print(response[0]['generated_text'])
import requests
import json
# Vertex AI endpoint
endpoint_url = "https://your-endpoint.googleapis.com/v1/projects/your-project/locations/us-central1/endpoints/your-endpoint:predict"
# Request payload
payload = {
"instances": [{
"prompt": "What are the symptoms of diabetes?",
"max_tokens": 200,
"temperature": 0.7
}]
}
# Make API request
headers = {
"Authorization": "Bearer YOUR_ACCESS_TOKEN",
"Content-Type": "application/json"
}
response = requests.post(endpoint_url, json=payload, headers=headers)
result = response.json()
print(result['predictions'][0]['generated_text'])
from transformers import AutoModel, AutoProcessor
import torch
from PIL import Image
# Load MedSigLIP model
model = AutoModel.from_pretrained("google/medsiglip")
processor = AutoProcessor.from_pretrained("google/medsiglip")
# Load and process image
image = Image.open("medical_image.jpg")
text = "chest x-ray showing pneumonia"
# Process inputs
inputs = processor(
text=[text],
images=[image],
return_tensors="pt",
padding=True
)
# Get embeddings
with torch.no_grad():
outputs = model(**inputs)
image_embeds = outputs.image_embeds
text_embeds = outputs.text_embeds
# Calculate similarity
similarity = torch.cosine_similarity(image_embeds, text_embeds)
print(f"Similarity score: {similarity.item():.4f}")
import torch
from transformers import AutoModel, AutoProcessor
from PIL import Image
# Load model and processor
model = AutoModel.from_pretrained("google/medsiglip")
processor = AutoProcessor.from_pretrained("google/medsiglip")
# Define classification labels
labels = [
"normal chest x-ray",
"pneumonia chest x-ray",
"covid-19 chest x-ray",
"lung cancer chest x-ray"
]
# Load image
image = Image.open("chest_xray.jpg")
# Process inputs
inputs = processor(
text=labels,
images=[image] * len(labels),
return_tensors="pt",
padding=True
)
# Get predictions
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits_per_image
probs = torch.softmax(logits, dim=-1)
# Get top prediction
top_idx = torch.argmax(probs, dim=-1)
confidence = probs[0, top_idx].item()
print(f"Prediction: {labels[top_idx]}")
print(f"Confidence: {confidence:.4f}")
Complete documentation and examples